Köp nya:
957,71 kr
GRATIS leverans: Måndag, 27 sep
Prioriterad leverans: Lördag, 25 sep
Beställ inom 7 tim och 38 min
Endast 8 kvar i lager (fler är på väg).
957,71 kr kr () Inkluderar valda alternativ. Inkluderar inledande månadsbetalning och valda alternativ. Information
Pris
Delsumma
957,71 kr kr
Delsumma
Uppdelning av första betalning
Fraktkostnad, leveransdatum och ordersumma (inklusive moms) visas i kassan.
Din transaktion är säker
Vi jobbar hårt för att skydda din säkerhet och integritet. Vårt säkerhetssystem för betalningar krypterar din information under överföringen. Vi delar inte dina kreditkortsuppgifter med tredjepartssäljare, och vi säljer inte din information till andra.
Skickas från Amazon
Säljs av Amazon
Skickas från
Amazon
Säljs av
Amazon
Returer: Den här artikeln kan returneras
Artikeln kan returneras i ursprungsskick för en fullständig återbetalning eller ersättning inom 30 dagar från mottagandet
1-Click-beställning är inte tillgängligt för artikeln.
Vänd till baksida Vänd till framsidan
Lyssna Spelar ... Pausade   Du lyssnar på ett urval av Audible audio edition.
Läs mer

The Big R-Book: From Data Science to Learning Machines and Big Data Inbunden – 27 Oktober 2020

4,0 av 5 stjärnor 3 betyg

Pris
Nytt från Används från
Inbunden
957,71 kr
957,71 kr

Förbättra ditt köp

Produktbeskrivning

Från fliken på insidan

Introduces professionals and scientists to statistics, machine learning, and big data using the programming language R

Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science.

The Big R-Book: From Data Science to Learning Machines and Big Data includes nine parts, starting with an introduction to the subject and followed by an overview of R and elements of statistics. The third part revolves around data, while the fourth focuses on data wrangling and exploring data. In Part 5 we learn to build models, Part 6 introduces the reader to the reality in companies, Part 7 covers reports and interactive applications and Part 8 introduces the reader to big data and performance computing. The appendices focus on specialist topics such as building your own extention for R, answer questions that appear througout the book, etc.

  • Provides a practical guide for non-experts with a focus on business users
  • Contains a unique combination of topics including an introduction to R, machine learning, multi criteria decision analysis, mathematical models, data wrangling, and reporting
  • Uses a practical tone and integrates multiple topics in a coherent framework
  • Demystifies the hype around machine learning and AI by enabling readers to understand the models and program them in R
  • Shows readers how to visualize results in reports and dynamic websites
  • Supplementary materials include PDF slides based on the book's content on an Wiley Instructor-only Book Companion Site, as well as all the extracted R-code available to everyone on a Wiley Student Book Companion Site

The Big R-Book is an excellent guide for science technology, engineering, or mathematics students and graduates who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models or review them.

Från baksidan

Introduces professionals and scientists to statistics, machine learning, and big data using the programming language R

Written by and for practitioners, this book provides an overall introduction to R, focusing on tools and methods commonly used in data science, and placing emphasis on practice and business use. It covers a wide range of topics in a single volume, including big data, databases, statistical machine learning, data wrangling, data visualization, and the reporting of results. The topics covered are all important for someone with a science/math background that is looking to quickly learn several practical technologies to enter or transition to the growing field of data science.

The Big R-Book: From Data Science to Learning Machines and Big Data includes nine parts, starting with an introduction to the subject and followed by an overview of R and elements of statistics. The third part revolves around data, while the fourth focuses on data wrangling and exploring data. In Part 5 we learn to build models, Part 6 introduces the reader to the reality in companies, Part 7 covers reports and interactive applications and Part 8 introduces the reader to big data and performance computing. The appendices focus on specialist topics such as building your own extention for R, answer questions that appear througout the book, etc.

  • Provides a practical guide for non-experts with a focus on business users
  • Contains a unique combination of topics including an introduction to R, machine learning, multi criteria decision analysis, mathematical models, data wrangling, and reporting
  • Uses a practical tone and integrates multiple topics in a coherent framework
  • Demystifies the hype around machine learning and AI by enabling readers to understand the models and program them in R
  • Shows readers how to visualize results in reports and dynamic websites
  • Supplementary materials include PDF slides based on the book's content on an Wiley Instructor-only Book Companion Site, as well as all the extracted R-code available to everyone on a Wiley Student Book Companion Site

The Big R-Book is an excellent guide for science technology, engineering, or mathematics students and graduates who wish to make a successful transition from the academic world to the professional. It will also appeal to all young data scientists, quantitative analysts, and analytics professionals, as well as those who make mathematical models or review them.

Produktinformation

  • Utgivare ‏ : ‎ John Wiley and Sons Ltd; 1:a utgåvan (27 Oktober 2020)
  • Språk ‏ : ‎ Engelska
  • Inbunden ‏ : ‎ 928 sidor
  • ISBN-10 ‏ : ‎ 1119632722
  • ISBN-13 ‏ : ‎ 978-1119632726
  • Kundrecensioner:
    4,0 av 5 stjärnor 3 betyg

Kundrecensioner

4,0 av 5 stjärnor
4 av 5
3 övergripande betyg
Hur beräknas betyg?

Inga kundrecensioner från Sverige

Det finns 0 recensioner och 0 kundbetyg från Sverige

Populäraste recensionerna från andra länder

chara11
3,0 av 5 stjärnor Average
Granskad i Tyskland den 6 maj 2021
Verifierat köp